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Introduction

We have generated tissue phantoms with optical and acoustic scattering

properties similar to soft tissues. Using tissue phantoms the optimal absorber

(dye) concentration for THORS barrier generation was determined using 532 nm

excitation.

Future studies will include optimization of THORS barrier generation

within condensed media as well as investigation into the use of THORS for high

resolution biomedical imaging. This work will also investigate the effect of pulse

width of the optical channel on ultrasonic reflection efficiency at varying

distances.
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Expanding on previous work using THORS to manipulate

acoustic waves in air, we investigate this phenomenon in tissue

phantoms using ultrasound and potentially providing new insights into

deeper tissue penetration for biological imaging and detection. In this

work ultrasonic waves are reflected off a thermally-induced optical

barrier, generated by a pulsed-laser and monitored via a broadband

ultrasonic transducer. As the laser passes through the tissue phantom, the

photothermally-induced barrier is generated causing ultrasonic waves to

reflect due to the abrupt change in compressibility (Fig 1). This can

potentially provide a means of improving both the depth and resolution

of ultrasonic and photoacoustic biomedical imaging. The work explores

the expansion and characterization of this phenomenon for ultrasonic

waves in condensed media (i.e. tissue phantoms)[1].

Results and Discussion

Photoacoustic spectrum of  Tulip Red 

Conclusion and Future Work

This project was supported by UMBC and NSF-REU award No. CHE-1460653.

Relative Photoacoustic signal was collected in order to

determine the optimal wavelength and intensity to use for the

tissue phantoms. The wavelengths chosen from the spectrum

were 450 nm and 532 nm (Graph 1).

Experimental Procedure 

• 30 g Bovine Gelatin

• 400 mL DI water

• Tulip Red Dye stock solutions

• 1:5 stock dye solution to gelatin ratio
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Tissue Phantom Preparation [2]

Fig 1. a) Experimental setup using ultrasound
b) Depiction of THORS barrier in tissue phantom 

• Cube cut to approximately

30mm x 30mm x 30mm

• Concentrations of dye in

tissue phantoms: no dye,

100 ppm, 375ppm, 875

ppm, and 1800 ppm
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Graph 1. Ultrasound photoacoustic signal 
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To simulate optical and acoustic scattering in tissues,

Bovine Gelatin tissue phantoms were prepared.
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Optimizing Barrier Generation in Tissue Phantoms
Fig 3. Ultrasound Reflection in no dye tissue phantom at 532 nm

In Fig 3 below, the predicted time scale (expected THORS barrier) can be

calculated based on the placement of the laser beam to the transducer and the

speed of sound in tissue phantoms (1550 m/s).

• Laser pulse at time 0

• Transducer output pulse triggered within microsecond of laser

• Next is the photoacoustic signal, photothermally generated by the laser pulse

• The reflected signal is the time it took for the transducer output pulse to reach

the back wall of the tissue phantom and return

Tissue phantoms were doped with different

concentrations of Tulip Red to provide maximal absorption

while still allowing penetration through entire sample (Fig 2).

• Optical scattering coefficient similar to tissues (39 cm-1 ) [3]

• Absorption at 532 nm was used due to higher laser power

• Penetration distances: 2 mm, 10 mm, 28 mm, 30 mm

a)

b)


